
Learning to Be Lazy

Laio Seman
Eduardo Camponogara

June 2024

This dissertation introduces a novel “Learning to Be Lazy” methodology, aimed at improving the efficiency of
Mixed-Integer Linear Programming (MILP) solvers. The approach involves predicting lazy constraints, which are not
immediately necessary for solving the initial relaxation of an MILP problem but may become critical at later stages.
By identifying such constraints in advance, computational resources can be saved, and the solving process can be
expedited. The proposed model leverages Graph Neural Networks (GNNs) and multitask learning to classify con-
straints and determine confidence levels for their laziness. The findings will be implemented in modern programming
languages and tested on real-world optimization problems, with performance comparisons against state-of-the-art
solvers.

Keywords: MILP, Graph Neural Networks, Lazy Constraints, Multitask Learning.

1 Introduction
Mixed-Integer Linear Programming (MILP) is a powerful optimization tool used across various domains, including
logistics, finance, and engineering. However, solving MILP problems efficiently remains a significant challenge due
to the combinatorial explosion of feasible solutions. Lazy constraints, which are constraints deferred during the initial
relaxation but may become critical later, offer a potential solution to improve solver efficiency. The proposed SatGNN
framework aims to predict these lazy constraints and their confidence levels, leveraging the power of Graph Neural
Networks (GNNs) and multitask learning.

The “Learning to Be Lazy” methodology, which aims not only to predict whether a particular constraint is “lazy”
or not but also to determine a confidence level for this classification. A lazy constraint is one that is not immediately
necessary for solving the initial relaxation of a MILP problem but may become critical at later stages or in specific
branches of the solution tree. Identifying such constraints in advance can save computational resources and speed up
the solving process.

Our model employs multitask learning within the same GNN framework to perform this classification and to
generate the associated confidence interval:

lazyGNN : R4 −→ [0, 1]× {0, 1}, (1)
fvcon 7−→ (Confidencelaziness,Classificationlaziness) = lazyGNN(fvcon) (2)

Here, Confidencelaziness serves as a slack variable, providing a more nuanced decision-making process. The
Classificationlaziness is a binary indicator that marks a constraint as lazy (1) or not (0), based on whether the confi-
dence level crosses a pre-defined threshold.

The multitask training phase of lazyGNN optimizes for both the classification of constraints into lazy or non-
lazy categories and the confidence level associated with each prediction (by means of the predicted slackness). The
objective function includes terms for the binary cross-entropy loss for the laziness classification and a suitable loss
function for the confidence level.

This methodology offers several advantages. Firstly, it allows the optimization solver to focus on more relevant
constraints, thereby speeding up the optimization process. Secondly, the use of a slack variable, or confidence level,
allows for a more nuanced decision-making process, enabling the model to be more adaptable to different problem
instances.

1



2 Objectives
This dissertation aims to advance the state-of-the-art in MILP solvers by incorporating a “Learning to Be Lazy”
methodology within a GNN framework. The specific objectives are:

• Develop a GNN model that predicts lazy constraints and their confidence levels for MILP problems.

• Implement the lazyGNN model in a modern programming language, such as Python with PyTorch or Tensor-
Flow.

• Apply the model to representative MILP problems across various domains, including logistics and engineering.

• Compare the performance of the lazyGNN-enhanced solver against state-of-the-art MILP solvers.

3 Methodology
Graph Neural Networks are an advanced form of neural network architectures specifically designed to handle graph-
structured data. The motivation behind GNNs is to generalize the concepts from Convolutional Neural Networks
(CNNs), which have been exceptionally successful with image and grid-like data, to data structures that are inherently
non-grid-like, such as graphs. Therefore, the primary input to a GNN consists of a graph, coupled with features
associated with its nodes. This input graph undergoes an iterative process of feature update, which is conceptually
similar to how a convolution operation works in CNNs. This similarity has led to the process being termed as graph
“convolutions.”

Specifically, a GNN layer can be broken down into two main sequential operations:

• Message Computation: In this phase, for every node u in the graph, a “message” is computed. This message,
denoted as m(l)

u , is a result of applying the function Ml(·) on the node’s features from the previous layer:

m(l)
u = Ml(h

(l−1)
u ), ∀u ∈ V (3)

• Node Feature Update: Once the messages for all nodes are computed, the next step is to update the node
features using these messages. The updated feature for a node v, h(l)

v , is computed by taking the node’s previous
features, aggregating the messages from its neighbors, and then applying the update function Ul(·):

h(l)
v = Ul

(
h(l−1)
v ,Aggregation

({
m(l)

u : u ∈ N (v)
}))

(4)

where N (v) is the set of neighboring nodes of v.

There have been various models in the literature that define specific implementations of the aforementioned oper-
ations. Notable examples include the work by Kipf and Welling (2017) and Hamilton et al. (2017).

MILP problems can be represented and fed into GNNs by constructing bipartite graphs. In these graphs, one set
of nodes represents the variables in the MILP problem, while the other set represents the constraints. The edges in this
bipartite graph are then determined based on the relationships dictated by the MILP’s incidence matrix, denoted as A.
Furthermore, the initial features of these nodes can be derived from the weights associated with the nodes and edges,
which are given by elements like cj and Ai,j .

To illustrate with an example, let us consider a hypothetical MILP problem defined with c = [1, 2, 3]T , A =
[[1, 2, 0], [0, 1,−1], [3, 0, 1]], and b = [2, 1, 4]T . Based on this, a bipartite graph can be constructed. This graph would
have two sets of nodes: Vvar representing variables {x1, x2, x3} and Vcon representing constraints {C1, C2, C3}. The
edges in this graph, denoted as E, are then determined by looking at the non-zero elements present in matrix A.

2



4 References
• Kipf, T. N., & Welling, M. (2017). Semi-Supervised Classification with Graph Convolutional Networks. arXiv

preprint arXiv:1609.02907.

• Hamilton, W. L., Ying, R., & Leskovec, J. (2017). Inductive Representation Learning on Large Graphs. In
Advances in Neural Information Processing Systems (pp. 1024-1034).

3


